A Protein L -Based Immunodiagnostic Approach Utilizing Time-Resolved Förster Resonance Energy Transfer
نویسندگان
چکیده
Chelated lanthanides such as europium (Eu) have uniquely long fluorescence emission half-lives permitting their use in time-resolved fluorescence (TRF) assays. In Förster resonance energy transfer (FRET) a donor fluorophore transfers its emission energy to an acceptor fluorophore if in sufficiently close proximity. The use of time-resolved (TR) FRET minimizes the autofluorescence of molecules present in biological samples. In this report, we describe a homogenous immunoassay prototype utilizing TR-FRET for detection of antibodies in solution. The assay is based on labeled protein L, a bacterial protein that binds to immunoglobulin (Ig) light chain, and labeled antigen, which upon association with the same Ig molecule produce a TR-FRET active complex. We show that the approach is functional and can be utilized for both mono- and polyvalent antigens. We also compare the assay performance to that of another homogenous TR-FRET immunoassay reported earlier. This novel assay may have wide utility in infectious disease point-of-care diagnostics.
منابع مشابه
Time-Resolved FRET -Based Approach for Antibody Detection – A New Serodiagnostic Concept
Förster resonance energy transfer (FRET) is a phenomenon widely utilized in biomedical research of macromolecular interactions. In FRET energy is transferred between two fluorophores, the donor and the acceptor. Herein we describe a novel approach utilizing time-resolved FRET (TR-FRET) for the detection of antibodies not only in a solution-phase homogenous assay but also in single- and two-step...
متن کاملRapid homogeneous immunoassay based on time-resolved Förster resonance energy transfer for serodiagnosis of acute hantavirus infection.
We recently introduced a homogeneous immunoassay based on time-resolved Förster resonance energy transfer (TR-FRET) elicited by fluorophore-labeled antigen and fluorophore-labeled protein L, bound by an immunoglobulin. As the first clinical application, we employ this approach (LFRET) in serodiagnosis of Puumala hantavirus (PUUV) infection. A reference panel containing serum from individuals wi...
متن کاملDistinguishing Förster Resonance Energy Transfer and solvent-mediated charge-transfer relaxation dynamics in a zinc(II) indicator: a femtosecond time-resolved transient absorption spectroscopic study.
A bifluorophoric molecule (1) capable of intramolecular Förster Resonance Energy Transfer (FRET) is reported. The emission intensity of the FRET acceptor in 1 depends on the molar absorptivity of the donor, which is a function of zinc(II) complexation. The FRET dynamics of [Zn(1)](ClO4)2 is characterized by femtosecond time-resolved transient absorption spectroscopy. The solvent-mediated relaxa...
متن کاملTime-Resolved Analysis of a Highly Sensitive Förster Resonance Energy Transfer Immunoassay Using Terbium Complexes as Donors and Quantum Dots as Acceptors
CdSe/ZnS core/shell quantum dots (QDs) are used as efficient Förster Resonance Energy Transfer (FRET) acceptors in a time-resolved immunoassays with Tb complexes as donors providing a long-lived luminescence decay. A detailed decay time analysis of the FRET process is presented. QD FRET sensitization is evidenced by a more than 1000-fold increase of the QD luminescence decay time reaching ca. 0...
متن کاملChanges in DNA bending and flexing due to tethered cations detected by fluorescence resonance energy transfer
Local DNA deformation arises from an interplay among sequence-related base stacking, intrastrand phosphate repulsion, and counterion and water distribution, which is further complicated by the approach and binding of a protein. The role of electrostatics in this complex chemistry was investigated using tethered cationic groups that mimic proximate side chains. A DNA duplex was modified with one...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014